
1

Reinforced GNNs for Multiple Instance Learning
Xusheng Zhao, Xu Bai, Qiong Dai, Jia Wu, Hao Peng, Huailiang Peng, Zhengtao Yu, Philip S. Yu, Fellow, IEEE

Abstract—Multiple instance learning (MIL) trains models from
bags of instances, where each bag contains multiple instances, and
only bag-level labels are available for supervision. The application
of graph neural networks (GNNs) in capturing intra-bag topology
effectively improves MIL. Existing GNNs usually require filtering
low-confidence edges among instances and adapting graph neural
architectures to new bag structures. However, such asynchronous
adjustments to structure and architecture are tedious and ignore
their correlations. To tackle these issues, we propose a Reinforced
GNN framework for MIL, RGMIL, pioneering the exploitation of
multi-agent deep reinforcement learning (MADRL) in MIL tasks.
MADRL enables the flexible definition or extension of factors that
influence bag graphs or GNNs and provides synchronous control
over them. Moreover, MADRL explores structure-to-architecture
correlations while automating adjustments. Experimental results
on multiple MIL datasets demonstrate that RGMIL achieves the
best performance with excellent explainability. The code and data
are available at https://github.com/RingBDStack/RGMIL.

Index Terms—Multiple instance learning, neural architecture
search, graph neural network, deep reinforcement learning.

I. INTRODUCTION

ONE of the disadvantages of standard supervised learning
is that it cannot handle training samples with ambiguous

or missing labels. As a variant of supervised learning, multiple
instance learning (MIL) can address this weakness. Instead of
treating labeled instances as training samples, MIL treats bags
that contain multiple instances as samples, and only the entire
bags are assigned labels. A bag is labeled as positive if it holds
at least one positive instance. Otherwise, a bag will be labeled
as negative, as shown in Fig. 1. MIL is dedicated to forecasting
bag-level labels and identifying instance importance.

MIL is common in real-world applications, especially in the
medical field [1]. For example, in breast cancer prediction [2],
it is significant for medical assistance to diagnose breast tissue
images that contains multiple regions of interest (ROIs), where
each ROI can be represented as an instance. Therefore, a tissue
image can be represented as a bag containing several instances.
An image bag is malignant (positive) if it contains at least one
malignant ROI instance. Otherwise, a bag is benign (negative).

Xusheng Zhao, Qiong Dai, Xu Bai, and Huailiang Peng are with the
Institute of Information Engineering, Chinese Academy of Sciences and
the School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, 100084, China. E-mail: {zhaoxusheng, daiqiong, baixu, penghuail-
iang}@iie.ac.cn.

Jia Wu is with the Department of Computing, Macquarie University, Sydney
NSW 2109, Australia. E-mail: jia.wu@mq.edu.au.

Hao Peng is with the School of Cyber Science and Technology, Beihang
University, Beijing, 100191, China. E-mail: penghao@buaa.edu.cn.

Zhengtao Yu is with the Faculty of Information Engineering and Au-
tomation, Kunming University of Science and Technology, Kunming 650500,
China. E-mail: ztyu@hotmail.com.

Philip S. Yu is with the Department of Computer Science, University of
Illinois at Chicago, Chicago, IL 60607, USA. E-mail: psyu@uic.edu.

Corresponding authors: Hao Peng and Qiong Dai

Samples in supervised learning

Two samples

＋ : Positive

: Negative

--
--

--
--

＋
--

Samples in MIL

Two instances

A sample

 : Positive

 : Negative

＋

＋

-
- -

Fig. 1: Examples of training samples from supervised learning
or MIL. In supervised learning, samples are labeled instances.

Multiple bags An initial bag graph

Threshold = 0.7 Threshold = 0.2

Two possible graphs after filtering

Filtration

Fig. 2: A toy example of converting a bag into possible graphs
based on different edge filtering thresholds.

Under this assumption, MIL is the natural paradigm to address
this problem, which has also been utilized for web mining [3],
graph mining [4], [5], sentiment analysis [6], etc.

Recent advances in deep learning have prompted many MIL
methods using deep neural networks (DNNs) [1], [7], [8], [9],
which usually outperform shallow methods. Many DNN-based
MIL methods such as AbMIL [1] and LbMIL [10] assume that
instances in any bag are independent and identically distributed
(IID). However, some studies like [11], [12] point out that this
IID assumption is unreliable in many cases because it ignores
the structural information encoded by the instances. Therefore,
graph neural networks (GNNs) [13], [14], [15], [16] are widely
applied in MIL to learn intra-bag topology and yield structure-
preserving representations, where instances serve as nodes and
edges are correlations among them. Existing GNN-based MIL
methods usually require filtering low-confidence edges among
instances to obtain reliable bag graphs. As shown in Fig. 2, the
higher filtering threshold represents that fewer but more robust
edges are preserved, while potentially losing some meaningful
but modestly reliable information. Conversely, a lower filtering
threshold may introduce too many meaningless edges in a bag.
Given that GNNs rely on graph structures for aggregation, such
uncertain filtration may result in unstable results. As shown in
Fig. 3, more aggregation iterations (reflected in the number of
GNN layers) prompt nodes to adopt farther-hop features when
fewer edges are retained. With a moderate threshold reduction,
edge density increases, and more GNN layers may cause nodes
to fuse information from too many other nodes, increasing the
risk of over-smoothing [17], [18]. As factors influencing graph

2

Threshold = 0.7 Layer number = 5 Threshold = 0.4 Layer number = 5

Fig. 3: A toy example of performing the same aggregation with
different edge filtering on a bag sample. Yellow dots represent
target nodes, while darker to lighter purple dots are neighbors
from near to far hops.

structures and GNN architectures are numerous and correlated,
manually adjusting them in an asynchronous manner is tedious
and inflexible.

To deal with the above challenges, we propose a Reinforced
GNN framework for MIL (RGMIL), pioneering the application
of multi-agent deep reinforcement learning (MADRL) in MIL.
MADRL enables the flexible definition or extension of factors
that influence bag graphs and GNNs. We target the adjustment
of the filtering threshold that influences the edge density within
the bag graph and the number of model layers for aggregation
to implement RGMIL. The training process of RGMIL is then
modeled as a fully cooperative Markov game (MG) [19]. First,
we divide the training set into equal-sized blocks, one of which
serves as the validation set, and the others are used to construct
the MG state space. Then, two agents search for edge filtering
thresholds and GNN layers, both of which have discrete action
spaces. At a time step, each agent picks out an action according
to the corresponding partial observations of the current global
state, thereby guiding the construction of bag graphs and GNN
layers. Since the purpose of GNNs is to improve representation
learning, we regard the difference in adjacent performance on
the validation set as the current reward. In other words, agents
receive a positive reward if the model trained with the current
action combination performs better on the validation data than
the previous one, and vice versa. Finally, we introduce a novel
heuristic state transition function to determine the next global
state based on current actions. When the game reaches a Nash
equilibrium, test samples are processed using the final optimal
actions, where instances retain the best one-hop neighbors and
have the best number of aggregation iterations. In this way, we
achieve automatic synchronous control over both structure and
architecture.

For practical deployment, we select and improve a MADRL
algorithm, i.e., value decomposition network (VDN) [20], that
uses reverse decomposition to measure agent contributions and
correlations. We utilize the graph attention network (GAT) [21]
and design a parameter-sharing mechanism to boost efficiency.
In addition, explainability is also significant to advance MIL in
engineering applications because we often needs to understand
the motivations behind decisions. Taking the colon cancer task
as an example again, after accurately identifying the malignant
images of colon tissue, we also need to quantitatively calculate
the impact of different ROI instances on the bag classification
results. Therefore, we leverage attention-based pooling to yield
bag-level representations.

The main contributions are summarized as follows:
• This is an initial endeavor to introduce MADRL into MIL,

enabling automated and synchronized control of bag structures
and GNN architectures, where the factors to be controlled can
be flexibly defined and expanded.
• We use the edge threshold and the number of GNN layers

as factor cases to construct RGMIL, exploring the correlations
between edge density and aggregation range, which have been
overlooked in previous MIL studies.
• Extensive experiment results demonstrate that the RGMIL

outperforms the state-of-the-art baselines, especially on bench-
mark and text datasets, with an average accuracy improvement
of 2-3%. Besides, RGMIL achieves superior result explainabil-
ity than existing methods.

This paper is organized as: Sec. II introduces related works.
Sec. III describes preliminaries. Sec. IV-V present the method-
ology and experiments. Sec.VI summarizes this work.

II. RELATED WORKS

In this section, we introduce two categories of related works.
They are graph neural network (GNN)-based multiple instance
learning (MIL) algorithms and graph neural architecture search
(GNAS) with reinforcement learning (RL).

A. GNN-based MIL

MIL [22], [23], [24] is receiving broad recognition due to its
ability to process ambiguous labels in real-world applications.
For example, in the context of Internet engineering, [3] regards
the web index recommendation issue as a MIL problem. In this
background, the index webpages are treated as bags while their
linked webpages are instances without clear annotations. Since
effectively capturing correlations among instances is beneficial
for GNNs to learn better bag representations and achieve better
bag classification, a large number of GNN-based MIL methods
have emerged. For example, [13] proposed GNN-MIL, which
treats instances as non-IID and leverages traditional GNNs and
differentiable pooling to implement MIL. [14] designed GNN-
RLHI to incorporate the global information of bag graphs into
the instance features. [15] proposed DGC-MIL, which includes
multiple modules like image processing, instance-level feature
extraction and selection. Through convolution aggregation and
feature selection, DGC-MIL achieves outstanding performance
in bag-level classification. Different from previous methods of
constructing bag graphs with feature similarities, [25] designed
a Bayesian GNN framework BGNN-MIL that infers possible
inter-bag correlations via bag features. [26] designed NAGCN,
which divides the instances in each bag graph into sub-graphs
based on the codebook and then aggregates the features within
and between the sub-graphs to learn local and global patterns.
Though these methods have verified the effectiveness of GNNs
in capturing correlations among instances, existing models are
either designed for specific MIL contexts or ignore the balance
between edge density of bag graphs and aggregation iterations.

B. GNAS with RL

An easy strategy to avoid exploring the interaction between
edge density and aggregation iterations is to deepen the GNN

3

TABLE I: Definitions of all notations.

Notation Definition
B The set of bag samples
G The set of bag graphs corresponding to B
Y The set of bag-level labels corresponding to G
M The seven-tuple of the Markov game
S The state space of M
O The observation space of M
A The action space of M
L The training loss of the agents or GNN model
N The total number of bag samples in B
M The total number of instances in a bag sample
L The total number of GNN layers
T The total number of time steps
I The total number of agents
D The dimension of feature representations
A The adjacency matrices corresponding to G
F The instance feature matrices corresponding to G
E The bag graph feature matrix corresponding to G
Z The feature transformation matrices
C The importance coefficient matrices

i; j; k; l; t These notations represent index variables
s; o; a; r A state; An observation; An action; A reward

v A feature vector of the attention mechanism
γ The discounted coefficient
α The learning rate of the agent function
µ The window size of action (or reward) records
λ The reward threshold of the termination condition

&;% The logical and; The remainder operation
⊕ The concatenation operation

∥·∥ The norm function of the matrix
σ(·) The activation function
π(·) The agent state-action function (or table) of M

RWD(·) The reward calculation function of M
TRN(·) The Markov state transition function of M
AGG(·) The feature aggregation function
POL(·) The node feature pooling function
EV L(·) The classification performance evaluation function

using skip connections [27], [28]. This strategy enables a large
number of GNN layers to be clustered without over-smoothing
problems that may occur due to higher edge density. However,
many studies on GNAS [29], [30], [31], [32] verify that usually
not all neighbors are precious for feature aggregation. Filtering
irrelevant neighbor nodes and corresponding edges effectively
prevent goal nodes from aggregating interference information.
On the other hand, some studies like [33], [34] show that even
if layer-fixed deep GNNs via skip-connections are suitable for
many applications, further searching the best number of feature
aggregations will still improve model performance. Moreover,
the vast range of possible choices makes manually finding the
best layer settings even more infeasible.

Recently, owing to the advances of RL [35], [36], [37], some
studies use RL to further break the performance boundaries of
GNN models. Both the edge filtering threshold and the number
of GNN layers are critical factors to be searched. For example,
studies like [29], [30], [31], [32] first sort the neighbors based
on diverse importance calculation methods, and then determine
the best number of neighbor nodes through one or more single-
agent RL. Besides, works such as [33], [34] also utilize single-
agent RL to implement GNN layer number search for different
nodes or graph samples. For multiple-agent RL (MARL)-based

GNAS works like [38], [39], [40], they usually care more about
aggregation functions, activation functions, etc. None of them
simultaneously search for the filtering threshold and number of
layers, both of which are significant graph neural architectural
factors. Besides, there is currently no study introducing GNAS
into GNN-based MIL, limiting the ability of GNNs to explore
instance-level dependencies, where initial bag graphs are often
fully connected. Therefore, RGMIL, which fills the above gap,
is meaningful for both GNN-based MIL and GNAS.

III. PRELIMINARIES

The preliminary knowledge consists of two parts. Sec. III-A-
III-B are related formulations of multiple instance learning and
MIL with graph neural networks. Sec. III-C-III-D describe the
Markov game and deep Q-learning. The key notations involved
in this work are summarized in Table I.

A. Multiple Instance Learning
We can formulate multiple instance learning (MIL) as a kind

of supervised learning with bags of instances as input and bag
labels as targets. Given the bag set B =

{
Bi | i = 1, . . . , N

}
, a

bag contains multiple instances Bi =
{
Bi,j | j = 1, . . . ,M

}
,

N indicates the total number of bags and M is the number of
instances in a bag (M is usually different for different bags).
There is a two-class bag-level label Yi = max(Yi,1, . . . ,Yi,M)
associated with the bag Bi, where Yi,j ∈

{
0, 1

}
is the assumed

label of the instance Bi,j . Even though few instance labels may
be available in the training set, MIL assumes that they are all
unknown during training. Thus, MIL aims to learn a mapping
function from bags B to their labels Y =

{
Yi | i = 1, . . . , N

}
,

i.e., B → Y .

B. MIL with Graph Neural Networks
For MIL with graph neural networks (GNNs), it first needs

to convert all bags B into a graph set G =
{
Gi | i = 1, . . . , N

}
,

where a bag Bi corresponds to a bag graph Gi = (Ai,Fi) and
an instance Bi,j can be represented as a node. Each adjacency
matrix Ai ∈ RM×M is constructed from original node features
and the edge filtering threshold, entries of which indicate one-
hop neighbor information. Fi ∈ RM×D represents the instance
node feature matrix with dimension D. Then, the L-layer GNN
is used to propagate node feature information. The aggregation
process of the GNN at the l-th layer for the i-th graph Gi can
be expressed as follows:

Fl
i = σ(AGGl(Ai,F

(l−1)
i)), (1)

where AGGl(·) represents the aggregation function at the l-th
layer like convolution and attention. σ(·) denotes the activation
function like ReLU and Tanh. Then, Fl

i is the D-dimensional
node-level feature matrix at the l-th layer. Next, a node feature
pooling function POL(·) is applied on the FL

i at the last layer
to get the final graph-level feature matrix E(i) ∈ R1×D of Gi:

E(i) = POL(
{
FL

i (j) | j = 1, . . . ,M
}
), (2)

where FL
i (j) ∈ R1×D is the final feature vector of the instance

node Bi,j . Finally, E(i) is transferred to a bag graph classifier
for binary classification. In GNN-based MIL, the mapping will
become B → G → Y .

4

C. Markov Game

As the basis of multi-agent reinforcement learning (MARL),
the Markov game (MG) is extended from the Markov decision
process (MDP). Specifically, a MG has multiple agents whose
actions jointly influence rewards and state transitions. Existing
MGs are fully or partially observable according to whether all
agents completely obtain the global state information, whereas
the latter MGs are more prevalent in formulating. The partially
observable MG can always be abstracted as a seven-tuple, i.e.,
M =< S,Oi,Ai, πi(·), REDi(·), TRN(·), γ >, where S is
the global state space of MG, Ai indicates the action space of
the i-th agent. At each time step t ∈ [1, T], each agent chooses
an action ati ∈ Ai with its exclusive state-action function πi(·).
All actions form the joint action a∗t = (ati|i ∈ [1, I]), where I
is the total number of agents and a∗t belongs to a joint action
space A∗ = ×iAi. More concretely, each agent will obtain an
independent partial observation oti ∈ Oi from the global state,
i.e., S → Oi. Thus, the action prediction of πi(·) is expressed
as S → Oi → Ai. Moreover, each agent obtains an immediate
reward rti using its reward function REDi(·). Since this study
focuses on the cooperative games, all agents receive the same
reward r∗t = rt1 = . . . = rtI . Such kind of game is also known
as the decentralized partially observable MDP (Dec-POMDP)
[41], aiming to maximize a cumulative return

∑T
t=1 γ

(t−1)r∗t,
where γ represents the discount coefficient that controls future
rewards. After that, the state transition function TRN(·) maps
the current state st along with joint action a∗t to the next state
s(t+1), i.e., S ×A∗ → S.

D. Deep Q-learning

As a basic algorithm of value-based reinforcement learning,
Q-learning [42] is a good fit for achieving one-agent sequential
decision systems. Q-learning contains a state-action table π(·),
which records the Q-values associated with all possible actions
in diverse states. After the initialization, the agent continuously
interacts with an environment and updates π(·) via the Bellman
equation until convergence. The update process of the π(·) can
be expressed as follows:

x = x+ α[rt + γmaxaπ(s(t+1), a)− x],

s.t. x = π(st, at),
(3)

where π(st, at) is a predicted Q-value and the expected reward
for selecting an action at in state st. rt indicates the immediate
reward at time step t, while maxa π(s

(t+1), a) is the maximum
Q-value of the next state s(t+1). Besides, α is the learning rate
of the agent state-action table π(·).

Since the state spaces of a lot of environments are infinite, it
is infeasible to record all values of state-action pairs in a table.
Influenced by deep learning, many works have introduced deep
neural networks (DNNs) to approximate returns, among which
deep Q-learning (DQN) [43] is a direct extension of traditional
Q-learning. DQN employs DNNs to construct the action-value
function π (a.k.a., Q-function), which maps each state vector to
a Q-value vector π(s) ∈ R1×|A|, where |A| denotes the size of
the action space A. Moreover, DQN applies experience replay
and target network techniques to update the function π(·). For
example, given the experience recorded at past time step t in a

tuple form < st, at, rt, a(t+1) >, the temporal-difference loss
of π can be calculated as follows:

Lπ = E<s,a,r,s′>[(π(s
t, at)− π(st, at))2],

s.t. π(st, at) = rt + γmaxaπ(s(t+1), a),
(4)

where π(·) represents the evaluation network applied to predict
the Q-value for state st and action at. π(·) is a target network
with same architectures as π(·). Only π(·) is optimized and its
trained parameters are periodically copied to π(·). The training
stability of π(·) is superb because the target Q-values are stable
when π is not updated. To trade off the probability of exploring
new actions, DQN also applies a ϵ-greedy algorithm. Hence, it
does not always choose the action corresponding to the largest
entry in π(s), which can be expressed as follows:

a =

{
random action, w.p. ϵ

argmaxaπ(s, a), w.p. 1− ϵ
, (5)

where ϵ denotes the probability of randomly selecting an action
(a.k.a., exploration), while (1−ϵ) means choosing the currently
π-based optimal action (a.k.a., exploitation). In doing so, DQN
avoids falling into the exploration-exploitation dilemma in RL
learning tasks [42], steers clear of local optima, and facilitates
the discovery of superior π functions.

IV. METHODOLOGY

This section introduces the technical details of the RGMIL,
including: 1) observation generation and interaction techniques
that improve game fairness (Sec. IV-A), 2) action selection and
guidance techniques that improve GNN efficiency (Sec. IV-B),
3) a reward calculation technique that improves game stability
(Sec. IV-C), 4) state transition and termination techniques that
ensure game convergence (Sec. IV-D), 5) multi-agent training
(Sec. IV-E). An overview of RGMIL over a time step is shown
in Fig. 4, whose left sub-figure corresponds to Sec. IV-A-IV-D
and right sub-figure corresponds to Sec. IV-E, respectively.

A. Observation Generation and Interaction
In particular, we model the training process of RGMIL as a

cooperative Markov game (MG) involving two agents, which
are used to search for the best edge filtering threshold and the
number of GNN layers, respectively. Specifically, we leverage
an improved value decomposition network (VDN) [20], which
is a multi-agent extension of DQN to achieve the MG. First, we
divide the training set into multiple equal-sized blocks, where a
block is the validation set and the remaining blocks are applied
as a state space S . Before the first time step, a training block is
randomly selected as the global state. Since the choice of edge
filtering threshold is usually related to topological information,
we then specify the structural features of the bag graphs in the
current state as the observation of the first agent. Moreover, we
establish initial edges of instance nodes through their pairwise
similarities. Taking the i-th bag Bi that belongs to the current
block as an example, its bag graph Gi can be abstracted as an
adjacency matrix Ai along with a feature matrix Fi. Given the
initial matrix F0

i , the initial adjacency matrix Ai is calculated
as follows:

Ai(j, j
′) =

∥∥F0
i (j)− F0

i (j
′)
∥∥
2
, (6)

5

0.20.10.1 ...MaxState space

Global state

Initial feature
information

Initial
topology

information

Action-1
Evaluation
network-1

Evaluation
network-2

0.1 Max0.10.2 ...

Reward

In
te

ra
ctio

n

Current obs. Action

3

|U|

Next obs.

Experience

Block-0

…

Block-1

Block-2

Block-4

Block-3

Block-|S|-1

Verification set

GNN

A
g

g
re

g
a
tio

n
Filtra

tio
n

Q-value vector-1
Observation-1 Agent-1 C

u
rre

n
t o

b
s.

P
re

d
icte

d
 Q

-va
lu

e

N
e
xt o

b
s.

T
a
rg

e
t Q

-va
lu

e
R

e
w

a
rd

Agent loss

Evaluation
network-1

Evaluation
network-2

Action

Q

Max

Q

MaxEvaluation
network-1

Target
network-1

Target
network-2

Evaluation
network-2

Q

Q

Block-|S|

T
ra

n
sitio

n

fu
n

ctio
n

R
e
w

a
rd

fu

n
ctio

n

Section III-A
Section III-B

Section III-C

Section III-E

Section III-D

Fig. 4: An overview of RGMIL. The left and right sub-figures respectively show the process of experience collection and agent
optimization. At each time step, the initial observations are derived from the current block. Then, the observations are used as
inputs to the agents. Each agent chooses an action based on the corresponding observation. Next, it builds reliable bag graphs
and feed them into a customized GNN. After GNN training, assess performance through the action combination to determine
the current reward. Finally, the transition function with actions as input is used to obtain the next observations. The quadruple
is now recorded in memory. Upon reaching a sufficient quadruple count, optimization of the agents is executed based on VDN.

where ∥·∥2 is the 2-norm of a matrix, and Ai(j, j
′) encodes an

Euclidean distance between the j-th and j′-th instance nodes.
Thus, the observation of the first agent is calculated as follows:

o1(d) =
1

Nd

Nd∑
i=1

exp(−Ai)

M2
i

,

s.t. Mi = d, d ∈ [1,maxiMi],

(7)

where o1(d) indicates the d-th entry of the vector o1, and Nd

is the number of bags of the current block, and the number of
instances in it is equal to d. Mi is the number of instance nodes
of the bag graph Gi. Since the number of GNN layers controls
feature aggregation iterations, we then acquire the observation
for the second agent from the initial node features F0

i , which
is calculated as follows:

o2 =
1

N

N∑
i=1

(
1

Mi

Mi∑
j=1

F0
i (j)), (8)

where F0
i (j) ∈ R1×D is the feature vector of the j-th instance

node. N is the total number of bag graphs of the current block.
To further explore the underlying correlations between edge

density and aggregation iterations, we introduce the following
observation information interaction:

o1 = o1 ⊕ σ((o1 ⊕ o2)(o2 ⊕ o1)
To2),

o2 = o2 ⊕ σ((o1 ⊕ o2)(o2 ⊕ o1)
To1),

(9)

where ⊕(·) is a concatenation operation for vectors. After this
operation, the observations o1 and o2 have the same dimension
and both encode information from the other. RGMIL alleviates
the unequal game challenge in the MG that may be caused by
variations in the feature dimension or amount of information of
observations. Moreover, to improve the efficiency of this part,
RGMIL calculates and records these initial adjacency matrices
with observations for each data block only once.

B. Action Selection and Guidance
Second, each agent maps its input observation vector oi to a

Q-value vector πi(oi) ∈ R1×|Ai| and yields an action ai based
on the largest Q-value entry or randomly (Eq. (5)). Particularly,
the first threshold action a1 ∈ [0, 1] is a fractional value, while
the second layer action a2 is an integer. Guided by a1, a more
reliable form of the adjacency matrix Ai can be expressed as:

Ai(j, j
′) =

{
1, exp(−Ai(j, j

′)) ≥ a1

0, exp(−Ai(j, j
′)) < a1

. (10)

After that, RGMIL builds a customized GNN guided by the
second action a2. Taking a graph attention network (GAT) [21]
as an example, whose aggregation process of node features can
be expressed as follows:

C
(l−1)
i (j, j′) = v(F

(l−1)
i (j)Z(l−1) ⊕ F

(l−1)
i (j′)Z(l−1))T,

Fl
i(j) = σ(

∑
j′

xF
(l−1)
i (j′)Z(l−1)),

s.t. x = softmax(σ(C(l−1)
i (j, j′))) & Ai(j, j

′) = 1,

(11)

where l ∈ [1, a2] represents running a2 iterative aggregations,
Fl

i(j) is a Dl-dimensional feature vector of the j-th node Bi,j
at the l-th GNN layer. Z(l−1) means the feature transformation
matrix with D(l−1)×Dl shape. Besides, v ∈ R1×2Dl

indicates
the feature vector of the self-attention mechanism, Ci(j, j

′) is
the importance coefficient of a neighbor Bi,j′ to its target Bi,j ,
whose normalized form needs to be obtained with softmax [21]
function, and & denotes the logic and operation. Based on the
attention-based node feature pooling function, RGMIL obtains
the final bag graph feature matrix E ∈ RN×Da2 of the current
training block, which can be calculated as follows:

Ca2
i (j) = softmax(v′(Fa2

i (j)Z′)T),

E(i) =

Mi∑
j=1

Ca2
i (j)Fa2

i (j),
(12)

6

where Fa2
i (j) indicates the Da2 -dimensional feature vector of

the j-th node at the last layer, whose corresponding importance
coefficient is Ca2

i (j). v′ and Z′ are the query vector and linear
transformation matrix of the attention mechanism respectively.
E(i) is the i-th row of E, also the feature vector of graph Gi.
Along with bag graph labels Y , the GNN loss is expressed as:

LGNN = −
N∑
i=1

Yi log(E(i)Z)T, (13)

where Z is the graph classifier, Yi is the label vector extended
by the label Yi ∈ Y of the bag graph Gi. The backpropagation
algorithm is then applied to optimize the GNN.

In order to improve the GNN efficiency, RGMIL introduces
a parameter-sharing mechanism in the GNN framework, whose
number of layers is fixed to the maximum action value. In this
way, RGMIL only needs to use and fine-tune the first at2 layers
of the GNN framework at each time step t. The RGMIL avoids
consuming a lot of time and space resources for rebuilding and
retraining new GNNs every time. Besides, RGMIL records the
number of occurrences of each action combination. If (a1, a2)
is recorded more than the predefined number, the current GNN
training process will be omitted.

C. Reward Calculation
Third, after obtaining the action combination and optimizing

the GNN, RGMIL will evaluate the combination by computing
an immediate reward on the validation data block. Specifically,
in fully cooperative MG modeled by RGMIL, all agents have
the same joint reward (a.k.a., team reward). Since GNN models
aim to improve representation learning, the reward is computed
based on the difference in bag graph classification performance
at adjacent time steps. Similarly, RGMIL processes validation
samples according to action a1 and feeds them into the model
with a2 layers. The reward function RWD(·) is expressed as:

r∗ = RWD(a1, a2) = EV L(t)− 1

µ

t∑
t′

EV L(t′),

s.t. t′ = t− µ+ 1,

(14)

where t indicates the current step, EV L(·) is the classification
performance evaluation function, µ represents the window size
of historical records. The RGMIL averages µ historical records
to ensure the reliability of the reward as well as the stability of
the game. In particular, µ also serves as the predefined number
of records for action combinations.

D. State Transition and Termination
Finally, RGMIL introduces a novel heuristic state transition

function to obtain the next global state and observations. More
specifically, inspired by the previous work [34], which treats an
action as a hop range to guide the transition, RGMIL calculates
the block index of the next global state according to the current
action combination. Considering a1 and a2 belong to decimals
and integers, respectively, RGMIL treats them as different state
transition dependencies. The data block index k corresponding
to the next state is calculated as follows:

k = ((round(a1) + a2) % |S|) + 1,

s.t. k ∈ [1, |S|] & round(a1) ∈ {0, 1} & a2 > |S|,
(15)

where round(·) denotes the mathematical rounding function, %
is the remainder operation. The action a2 is larger to ensure the
coverage of the training blocks, and round(a1) then provides a
small offset to increase the variation. Since k is mainly affected
by a2, RGMIL avoids the game non-convergence problem that
may be caused by the simultaneous violent fluctuations of the
two actions in the later stage. After this, RGMIL will construct
the next observations through Sec. IV-A. Thus, the experience
< (o1, o2), (a1, a2), r

∗, (o′1, o
′
2) > over one time step is stored.

The transition will not terminate until either reaching the last
time step T or, alternatively, meeting the following termination
condition at an earlier intermediate step t (where t ≤ T):

| 1
µ

t∑
t′

r∗t
′
| < λ, s.t. t′ = t− µ+ 1, (16)

where the inequality symbol indicates that the mean of the past
µ rewards has not improved beyond a predefined threshold, λ.
r∗t

′
is the joint reward at the past time step t′.

E. Multi-agent Training
When the number of historical experiences is greater than µ

and the game is not over, RGMIL needs to train the two agents
through experience replay after completing the aforementioned
process at a time step. Since the VDN justifies that the joint Q-
function can be decomposed into different Q-functions across
agents, it updates the agents in a value-decomposition manner.
Therefore, RGMIL decomposes the joint Q-value to each agent
through backpropagation. Both agents will be actively working
towards a common goal by measuring their contribution to the
joint Q-value. Given the experience tuple collected at time step
t, < (ot1, o

t
2), (a

t
1, a

t
2), r

∗t, (o
(t+1)
1 , o

(t+1)
2) >, the joint loss of

the agents can be calculated as follows:

Lπ∗ = E<s,a,r,s′>[(π
∗(o∗t, a∗t)− π∗(o∗t, a∗t))2], (17)

where π∗(o∗t, a∗t) indicates the predicted joint Q-value, which
can be expressed as follows:

π∗(o∗t, a∗t) ≈ π1(o
t
1, a

t
1) + π2(o

t
2, a

t
2), (18)

where π1(·) and π2(·) are evaluation networks (Q-functions) of
the first and second agents. π∗(o∗t, a∗t) denotes the target joint
Q-value, which can be formulated in a summation form similar
to Eq. (18), where each additive component, i.e., πi(o

t
i, a

t
i) can

be expressed as follows:

πi(o
t
i, a

t
i) = r∗t + γmaxaπi(o

(t+1)
i , a), (19)

where πi(·) is a target network of the i-th agent, which has the
same architectures as the πi(·). It is worth noting that RGMIL
only trains the evaluation networks and copies their parameters
to the target networks every µ time step.

To alleviate the possible over-estimation issue [43], RGMIL
employs the traditional double DQN algorithm to calculate the
target Q-value, which determines the action with the evaluation
network and computes the Q-value with the target network, as
shown in the right sub-figure of Fig. 4. Therefore, the Eq. (19)
will be transformed as follows:

πi(o
t
i, a

t
i) = r∗t + γπi(o

(t+1)
i , argmaxaπ(o

(t+1)
i , a)). (20)

7

Algorithm 1 RGMIL: Reinforced GNN Framework for MIL
Input: Bag samples B and their corresponding labels Y
Output: The bag-level feature matrix E of B

1: {Ai|i ∈ [1, N],N+} ← Eq. (6) // All adjacency matrices
2: // Observations for all training blocks
3: {(o1, o2)|i ∈ [1, |S|],N+} ← Eqs. (7, 8, 9)
4: for t = 1 to T do // Operations over a time step
5: (a1, a2)← Eq. (5) // The current action combination
6: // More reliable adjacency matrices
7: {Ai|i ∈ [1, N t],N+} ← Eq. (10)
8: for l = 1 to a2 do // Instance-level feature matrices
9: {Fl

i|i ∈ [1, N t],N+} ← Eq. (11)
10: end for
11: Et ← Eq. (12) // The bag-level feature matrix
12: LGNN ← Eq. (13) // The loss of the GNN model
13: r∗ ← Eq. (14) // The current joint reward
14: k ← Eq. (15) // The index of the next training block
15: if the termination condition Eq. (16) then break
16: end if
17: Lπ∗ ← Eqs. (17, 18, 20) // The joint loss of the agents
18: end for

F. Computational Complexity
RGMIL improves MIL performance while still having good

computational complexity. It first requires calculating N initial
adjacency matrices of all samples, whose computational com-
plexity is O(NM2D). Then, it will construct observations for
all data blocks, which takes O(|S|DNM2)+O(|S|NMD)+
O(|S|D). During each time step, the choice of the current two
actions takes O(D|A|), the generation of N reliable adjacency
matrices costs O(NM2), the feature learning of samples takes
O(NL(MD2+M2D)+N(MD+MD2+D2)), both reward
calculation and state transitions cost constant time, and the last
optimization of two agents takes O(D|A|). Hence, the overall
complexity of RGMIL is O(TNLMD2), which is acceptable.
Due to the excellent performance of the RGMIL, we argue that
it is worth sacrificing some time to augment GNN-based MIL.
Furthermore, the computational burden mainly comes from the
GNN-based model rather than multi-agent deep reinforcement
learning (MADRL). Because the efficiency of GNNs has been
a long-standing problem, high-performance GNNs can be used
to replace GAT to further improve the performance of RGMIL,
which is not the focus of this study. The algorithm process and
notations are available in Alg. 1 and Table I.

V. EXPERIMENTS

This section first describes the experimental configurations,
including MIL datasets, baselines, and implementation settings
(Sec. V-A-V-B). Then, we depict and analyze the experimental
results of bag-level classification (Sec. V-C-V-E).

A. Datasets and Baselines
The experiments apply three types of datasets, including five

benchmark datasets, five news text datasets, and three medical
image datasets, all of which are publicly available and popular
in MIL works. Table II summarizes the statistics of all datasets.
More details are described as follows:

TABLE II: Statistics for all datasets applied in the experiments.
The right columns show the total number of bags (positive and
negative), the total number of instances, and the dimensions of
instance features. NEWS-GROUPS provides average statistics.

Dataset Bag Instance DimensionTotal Positive Negative
MUSK1 [44] 92 47 45 476 166
MUSK2 [44] 102 39 63 6598 166

FOX [45] 200 100 100 1320 230
TIGER [45] 200 100 100 1220 230

ELEPHANT [45] 200 100 100 1391 230
NEWS-GROUPS [12] 100 50 50 3197 200

MESSIDOR [46] 1200 654 546 12352 687
UCSB-BREAST [2] 58 26 32 2002 708

COLON-CANCER [48] 100 51 49 22448 729

1) Benchmark Datasets: The first category covers five MIL
benchmark datasets, where MUSK1 and MUSK2 [44] are both
datasets for identifying whether a molecule has a musky smell
or not. A molecule has different conformations. However, not
all conformations can cause it to smell musky. For a molecule,
it is labeled as positive if and only if it has at least one musky
conformation. Therefore, a molecule can be regarded as a bag,
and the conformations are instances. The remaining three, i.e.,
FOX, TIGER, and ELEPHANT [45] are animal detection tasks
that treat an image as a bag and the marked ROIs in the image
are instances. Images containing the target animal in ROIs are
marked as positive, otherwise negative. All these datasets have
predefined features and a small number of bags and instances.

2) Text Datasets: The second category is five text datasets.
Concretely, we select five datasets from NEWS-GROUPS [12]
that contains 20 corpus from the same interval. Each of the five
datasets consists of 100 bags, with the same number of positive
and negative samples. In a dataset, a news article is an instance
that may come from 20 different topics. Besides, each instance
is represented by the top 200 term frequency-inverse document
frequency (TF-IDF). A bag is an article group containing about
40 instances. A positive bag has about 3% of positive instances
belonging to the target topic. A consistent purpose across these
tasks is to correctly judge the category of a given article group
(bag) or whether it has articles (instances) with the target topic.

3) Image Datasets: The third category covers three clinical
medical image datasets. The first dataset, named MESSIDOR,
was originally collected by [46], which consists of 1200 fundus
images from 654 diabetic patients (positive) with 546 healthy
patients (negative). Here we follow the processing steps in [47]
to model the classification of fundus images as a MIL problem,
where an image (bag) is rescaled to the fixed shape (700×700
pixels) and contains multiple ROIs (instances) of uniform size
(135×135). For more information about the image processing,
such as ROI selection or feature extraction, please refer to [47].
The second dataset is UCSB-BREAST [2] which comprises 58
tissue images of 896×768 pixels yielded from 26 breast cancer
patients and 32 benign controls, where each image is regarded
as a bag whose ROIs with 7×7 size are extracted as instances.
A malignant image consists of at least one malignant ROI, and
a benign image comprises all benign ROIs. The third dataset is
COLON-CANCER [48] which consists of 100 images of colon
tissue of size 500×500. Each image contains a number of ROIs
of 27×27 in four categories, namely epithelial, inflammatory,

8

TABLE III: Classification results (average accuracy ± standard deviation) on benchmark datasets. The best results of all methods
are shown in bold, while the best results of all baselines are in italics.

Method Dataset
Mean1

MUSK1 [44] MUSK2 [44] FOX [45] TIGER [45] ELEPHANT [45]

Shallow
Baseline

mi-SVM [45] 0.874 ± N/A 0.836 ± N/A 0.582 ± N/A 0.784 ± N/A 0.822 ± N/A 0.780 ± 0.103
MI-SVM [45] 0.779 ± N/A 0.843 ± N/A 0.578 ± N/A 0.840 ± N/A 0.843 ± N/A 0.777 ± 0.102

MI-Kernel [49] 0.880 ± 0.031 0.893 ± 0.015 0.603 ± 0.028 0.842 ± 0.010 0.843 ± 0.016 0.812 ± 0.107
EM-DD [50] 0.849 ± 0.044 0.869 ± 0.048 0.609 ± 0.045 0.730 ± 0.043 0.771 ± 0.043 0.766 ± 0.093

mi-Graph [12] 0.889 ± 0.033 0.903 ± 0.039 0.620 ± 0.044 0.860 ± 0.037 0.869 ± 0.035 0.828 ± 0.105
miVLAD [51] 0.871 ± 0.043 0.872 ± 0.042 0.620 ± 0.044 0.811 ± 0.039 0.850 ± 0.036 0.805 ± 0.095

miFV [51] 0.909 ± 0.040 0.884 ± 0.042 0.621 ± 0.049 0.813 ± 0.037 0.852 ± 0.036 0.816 ± 0.103

DNN-based
Baseline

mi-Net [9] 0.889 ± 0.039 0.858 ± 0.049 0.613 ± 0.035 0.824 ± 0.034 0.858 ± 0.037 0.808 ± 0.100
MI-Net [9] 0.887 ± 0.041 0.859 ± 0.046 0.622 ± 0.038 0.830 ± 0.032 0.862 ± 0.034 0.812 ± 0.097

MI-Net with DS [9] 0.894 ± 0.042 0.874 ± 0.043 0.630 ± 0.037 0.845 ± 0.039 0.872 ± 0.032 0.823 ± 0.098
MI-Net with RC [9] 0.898 ± 0.043 0.873 ± 0.044 0.619 ± 0.047 0.836 ± 0.037 0.857 ± 0.040 0.817 ± 0.101

AbMIL [1] 0.892 ± 0.040 0.858 ± 0.048 0.615 ± 0.043 0.839 ± 0.022 0.868 ± 0.022 0.814 ± 0.101
AbMIL-Gated [1] 0.900 ± 0.050 0.863 ± 0.042 0.603 ± 0.029 0.845 ± 0.018 0.857 ± 0.027 0.814 ± 0.107

MIVAE [52] 0.904 ± 0.050 0.890 ± 0.062 0.626 ± 0.055 0.850 ± 0.051 0.870 ± 0.064 0.828 ± 0.103
ARP-MINN [53] 0.910 ± 0.038 0.891 ± 0.041 0.622 ± 0.026 0.858 ± 0.020 0.879 ± 0.024 0.832 ± 0.106

GNN-based
Baseline

GNN-MIL [13] 0.917 ± 0.048 0.892 ± 0.011 0.679 ± 0.007 0.876 ± 0.015 0.903 ± 0.010 0.853 ± 0.088
GNN-RLHI [14] 0.924 ± 0.031 0.901 ± 0.032 0.683 ± 0.026 0.876 ± 0.019 0.905 ± 0.010 0.858 ± 0.088
DGC-MIL [15] 0.926 ± 0.023 0.902 ± 0.025 0.686 ± 0.010 0.883 ± 0.018 0.912 ± 0.008 0.862 ± 0.089

BGNN-MIL [25] 0.915 ± 0.023 0.894 ± 0.014 0.677 ± 0.012 0.881 ± 0.018 0.903 ± 0.011 0.854 ± 0.089
Ours RGMIL 0.939 ± 0.020 0.926 ± 0.010 0.712 ± 0.019 0.898 ± 0.014 0.926 ± 0.010 0.880 ± 0.085

fibroblast, and miscellaneous. Epithelial ROIs are often highly
associated with colon cancer, as the latter often arise from the
former. Hence, we regard epithelial ROIs as positive instances,
while ROIs belonging to the remaining categories are negative
instances. Therefore, an image bag is positive if it contains one
or more ROIs from the epithelial class.

4) Baselines: We compare RGMIL with popular baselines,
including mi-SVM & MI-SVM [45], MI-Kernel [49], EM-DD
[50], mi-Graph [12], miVLAD & miFV [51]. Since the above
are all shallow methods, we also utilize DNN-based baselines,
containing mi-NET & MI-NET & MI-NET with DS or RC [9],
AbMIL & AbMIL-Gated [1], MIVAE [52], ARP-MINN [53].
Moreover, we treat GNN-based baselines as a separate branch,
comprising GNN-MIL [13], GNN-RLHI [14], DGC-MIL [15],
BGNN-MIL [25], NAGCN [26]. Among these methods, mi- &
MI-SVM are support vector machine (SVM)-based algorithms,
which make SVM follow the MIL assumption that the positive
bag contains at least one positive instance. MI-Kernel is based
on kernel techniques. EM-DD combines the EM with the DD.
mi-Graph achieves MIL by performing kernel learning on bag
graphs. For DNN-based MIL baselines, NET and AbMIL use
mean- and attention-based pooling to obtain bag-level features.
MIVAE is the model with the variational auto-encoder (VAE).
ARP-MINN is a model based on dynamic pooling. For GNN-
based MIL algorithms, GNN-MIL [13] is the first GNN-based
MIL model. GNN-RLHI [14] introduces global information to
instance features and then creates bag graphs. DGC-MIL [15]
is the method based on a deep GCN [54] and feature selection.
BGNN-MIL [25] is a Bayesian GNN framework that proposes
a way to construct likely inter-bag relationships. NAGCN [26]
captures the hierarchical patterns of bag graphs by constructing
sub-graphs. Because RGMIL implements MADRL through the
optimized VDN, here we introduce the independent Q-learning
(IQL) [55]-based control. IQL is another widely used MADRL
algorithm, where each agent regards other agents as part of the
environment and has no interaction with each other.

B. Implementation Settings

For fairness, we utilize the evaluation techniques commonly
used in previous studies, applying ten-fold cross-validation and
repeating each task five times. Then, we utilize the mean with a
standard deviation of accuracy and F1-score, etc. as metrics to
verify the performance of models in these MIL tasks. Because
ten-fold cross-validation divides each dataset into equal-sized
blocks, nine of them naturally form a state space S as well as a
validation set of MG. Due to the small number of samples like
UCSB-BREAST, training resources may be insufficiency after
cutting out a verification set. Hence, for any repetition, we only
search for actions using the first cross-validation and guide the
subsequent validations based on the action combination.

Since the edge filtering threshold is a decimal, it falls within
the interval [0, 1], where 0 indicates retaining all edges, while 1
signifies the removal of all edges. Therefore, we partition [0, 1]
into smaller intervals using a finer granularity of 0.05, creating
the action space {0.05i|i ∈ [1, 20], i ∈ N+} for the first agent.
Since increasing the number of GNN layers will exponentially
expand the node aggregation scope, usually shallow GNNs are
sufficient to unlock the full model performance, the upper limit
of layers is set to 10. The action space of the second agent is
{j|j ∈ [1, 10], i ∈ N+}. Besides, we intentionally set the final
time step to be challenging to reach (T = 10000). As a result,
we reserve sufficient time space to evaluate the effectiveness of
the proposed termination condition (Eq. 16), which is expected
to stop MG early. At each time step, early termination requires
that the fluctuations of past µ reward values to be stable (mean
value of µ rewards tends to 0). Due to the difficulty of precisely
achieving a mean value of 0, we utilize a value close to 0, i.e.,
λ = 0.0001, to ensure convergence of the MG. Since µ is also
the maximum number of recorded action combinations, we set

1The “Mean” columns of all the tables in this work present the performance
“mean ± standard deviation” of each method under the datasets or metrics in
the previous columns.

9

TABLE IV: Classification results (average accuracy ± standard deviation) on textual news datasets.

Method Dataset [12] Meancomp.graphics comp.windows.x rec.sport.baseball sci.med talk.politics.mideast

Shallow mi-Graph [12] 0.778 ± 0.016 0.698 ± 0.021 0.647 ± 0.031 0.621 ± 0.039 0.736 ± 0.026 0.696 ± 0.057
miFV [51] 0.594 ± 0.063 0.768 ± 0.069 0.779 ± 0.066 0.783 ± 0.056 0.793 ± 0.060 0.743 ± 0.075

DNN-based MIVAE [52] 0.800 ± 0.042 0.754 ± 0.032 0.764 ± 0.036 0.745 ± 0.025 0.840 ± 0.020 0.781 ± 0.035
ARP-MINN 0.820 ± 0.055 0.838 ± 0.041 0.818 ± 0.062 0.782 ± 0.058 0.858 ± 0.051 0.823 ± 0.025

GNN-based GNN-RLHI [14] 0.826 ± 0.044 0.828 ± 0.035 0.810 ± 0.046 0.780 ± 0.061 0.852 ± 0.054 0.819 ± 0.024
DGC-MIL [15] 0.828 ± 0.048 0.830 ± 0.023 0.814 ± 0.067 0.782 ± 0.046 0.856 ± 0.036 0.822 ± 0.024

Ours RGMIL 0.840 ± 0.030 0.861 ± 0.047 0.846 ± 0.041 0.804 ± 0.022 0.858 ± 0.034 0.842 ± 0.020

TABLE V: Classification results (average accuracy ± standard deviation) on COLON-CANCER.

Method Metric MeanAccuracy Precision Recall F1-score AUC

DNN-based MIVAE [52] 0.926 ± 0.020 0.933 ± 0.019 0.932 ± 0.012 0.928 ± 0.008 0.929 ± 0.015 0.930 ± 0.003
ARP-MINN [53] 0.928 ± 0.066 0.934 ± 0.006 0.939 ± 0.108 0.928 ± 0.072 0.933 ± 0.064 0.932 ± 0.004

GNN-based
GNN-RLHI [14] 0.934 ± 0.005 0.929 ± 0.015 0.938 ± 0.017 0.926 ± 0.004 0.968 ± 0.002 0.939 ± 0.015
DGC-MIL [15] 0.940 ± 0.063 0.933 ± 0.019 0.939 ± 0.014 0.931 ± 0.006 0.962 ± 0.009 0.941 ± 0.011
NAGCN [26] 0.940 ± 0.014 0.935 ± 0.105 0.943 ± 0.026 0.931 ± 0.016 0.973 ± 0.004 0.944 ± 0.015

Ours RGMIL 0.942 ± 0.007 0.930 ± 0.015 0.958 ± 0.027 0.938 ± 0.008 0.974 ± 0.003 0.948 ± 0.016

TABLE VI: Results on MESSIDOR and UCSB-BREAST.

Dataset Method
GNN-RLHI [14] DGC-MIL [15] RGMIL

MESSIDOR [46] 0.725 ± 0.025 0.737 ± 0.035 0.746 ± 0.025
BREAST [2] 0.902 ± 0.026 0.910 ± 0.018 0.917 ± 0.019

it to a smaller value (µ = 10) to speed up the training of GNN
and the termination of the game. Generally, the discount factor
γ in Q-learning is typically set within the interval of [0, 1] [42].
When the γ is close to 0, the agent places more emphasis on
immediate rewards. In order to prioritize long-term cumulative
rewards, as done in previous studies [20], [33], [34], we set γ
to be close to 1, i.e., γ = 0.95. Furthermore, RGMIL involves
two methods that are widely used to enhance the reliability of
MADRL. For ϵ-greedy strategy (Eq. 5), we follow the classical
work [43] and equidistantly reduce the initial probability ϵ = 1
to 0 in the short term, i.e., the first 50 time steps. In this way,
RGMIL prevents the agents from falling into the local optimal
solution while accelerating game convergence. For experience
replay (Sec. IV-E), since replaying newer experiences involves
the risk of over-estimation [20], and earlier yielded experiences
become unreliable over time, we set the memory stack capacity
to be relatively modest 20, similar to previous studies like [34],
[43], [55]. Each agent π(·) utilizes the same DNN architecture
as [33]. Then, we train the GNN and agents based on the Adam
optimizer with a learning rate of 0.0005 and a decay factor of
0.001, which are common settings of deep learning framework.
The activation functions σ(·) all use LeakyRelu with a slope
rate of 0.1, which is often followed by the dropout with a drop
rate of 0.2, For all baselines, we follow the settings mentioned
in their studies to tune hyperparameters and report the highest
performance. Since COLON-CANCER does not have instance
feature vectors like other datasets, we use 27x27 ROI instances
as inputs. Considering that methods like MIVAE and RGMIL
are unable to handle images, we utilize a two-layer LeNet [56]
with a kernel size of 5 as the front network for instance feature
generation. All experiments are performed on the same server
with four NVIDIA GeForce RTX 3080 (10240 MiB).

Fig. 5: Visualization of ablation studies on benchmark datasets.

C. Results and Analysis

The bag classification results on the five benchmark datasets
are shown in Table III, from which we can gather the following
six conclusions. First of all, RGMIL outperforms baselines in
accuracy across all datasets (MUSK1, MUSK2, FOX, TIGER,
ELEPHANT), which signifies that there is valuable correlation
information among instances in the bag graphs of five datasets.
At the same time, RGMIL locates the best combination of edge
filtering threshold and GNN layer number in MG, promoting a
harmonious correlation between edge density and aggregation.
Second, compared to other non-DNN-based shallow baselines,
mi-Graph, which considers inter-instance correlations achieves
better results. This observation indicates that instances in each
bag are often not independent but have an underlying topology.
Third, MIVAE and ARP-MINN stand out among DNN-based
baselines. This is because non-IID MIVAE explicitly organizes
dependencies between instances, while ARP-MINN introduces
adaptive recurrent pooling, both of which further improve bag-
level feature representations. Fourth, GNN-based baselines are
comprehensively superior to shallow or DNN-based baselines,
including correlation-aware mi-graph and MIVAE. A possible
explanation is that GNNs have better ability to learn and utilize
topological representations, which facilitates the breakthrough
of MIL performance boundaries. Fifth, DGC-MIL outperforms
the baselines in the GNN category. This is because DGC-MIL
proposes an effective instance feature selection strategy, which
improves the discriminability of different bag samples. On the
other hand, DGC-MIL (same as GNN-RLHI) has tuned layers
because their articles lack an explicit setting. Last but not least,

10

(a) MUSK1 (b) MUSK2 (c) UCSB-BREAST (d) COLON-CANCER

Fig. 6: Visualization of MADRL in RGMIL on four datasets. The first row shows the action decision process of the two agents.
The second row depicts the optimization process of the GNN model. The third row shows the transformation of the reward and
verification performance. The fourth row depicts the number of traversals of each training block (state). The last row shows the
joint optimization of the two agents. “END” and “STA.” (red words) mean the time step to end and start training, respectively.

we believe that one-layer GNN-MIL and BGNN-MIL may not
adequately capture inter-instance correlations, even though the
latter considers inter-bag correlations.

Table IV presents the performance comparison of bag-level
classification on five news text datasets, from which we obtain
the following three conclusions. Firstly, RGMIL also achieves
the highest average accuracy on five textual datasets. Secondly,
MIVAE and GNN-based baselines do not achieve better results
than IID-based ARP-MINN. One explanation is that instances
originate from too many topics, resulting in a large number of
meaningless edges encoded in a bag graph. At the same time,
since RGMIL achieves customized edge filtering for different
news datasets, it always learns the best instance-level features
on the optimal bag topology. Hence, high-quality edge filtering
is an effective method to improve GNN-based MIL algorithms.
Finally, unlike the results on benchmark datasets, DNN-based
baseline shows significant performance improvement over the
shallow baseline. This is because instances of news data equip
sparse features that are not processed or precomputed, leaving
enough room for DNNs to tune and optimize.

Moreover, classification experiments are performed on three
medical image datasets to test the performance of the RGMIL.
Specifically, we compare different methods across five metrics
on COLON-CANCER. From Table V we observe that RGMIL
achieves the best mean results, and the other three GNN-based
baselines also have excellent results. This shows that RGMIL
is still effective on image MIL tasks, whose instances are also
non-IID. It is worth noting that compared with these baselines,
RGMIL improves the recall while maintaining a high precision
value, which meets the requirements of disease detection tasks.
Unlike other GNN-based baselines for whole graphs, NAGCN
divides bag graphs into multiple sub-graphs and then performs
feature aggregation and connection. The preassigned codebook
required by NAGCN consists of four colonic tissue categories.
Even with a suspicion of label leakage, NAGCN is still inferior
to the RGMIL. The experimental results from MESSIDOR and
UCSB-BREAST are shown in Table VI, from which we obtain
a similar conclusion. Although RGMIL does not customize the
image processing strategy like these baselines, it performs best
on both tasks. More analysis will be given in the next section.

11

(a) MUSK1 (b) MUSK2 (c) UCSB-BREAST (d) COLON-CANCER

Fig. 7: Visualization of MADRL in RGMIL-IQL. The first and second show action selection and reward calculation, respectively.

(a) UCSB-BREAST (b) COLON-CANCER

Fig. 8: Visualization of performance of RGMIL on two image
datasets. The x-axes represent fixed edge filtering thresholds or
GNN layers, while the y-axes indicate the average performance
over all possible choices in another action space.

D. Ablation Studies

We conduct ablation studies to analyze the specific effects of
each module in Sec. IV-A-IV-D. Because RGMIL innovatively
uses MADRL (i.e., VDN algorithm) to simultaneously control
the bag structures and GNN architectures in MIL, we construct
an IQL-based RGMIL as a control, RGMIL-IQL, whose game
tupleM is consistent with that of RGMIL, but each agent runs
independently. Besides, we build RGMIL-R without MADRL
(VDN and IQL), which randomly chooses action combinations
before each repetition. Fig.5 shows the prediction performance
of RGMIL, RGMIL-IQL, RGMIL-R, and GNN-MIL across all
benchmark datasets. For the two MUSK datasets, RGMIL-IQL
and RGMIL-R show comparable accuracy, but fall short when
compared to GNN-MIL and RGMIL. On the one hand, these
observations justify the effectiveness of observation interaction
and joint reward calculation in the RGMIL. On the other hand,
RGMIL-IQL may be tough to find the best action combination,
resulting in even worse performance than baselines with fixed
or random settings. For the other datasets, RGMIL-IQL is only
inferior to RGMIL, which means MADRL has the potential to
improve GNN-based MIL. RGMIL-R is still the worst method,
reflecting the high complexity of manual tuning.

To more intuitively display the performance of each module

in RGMIL, we visualize the MG process on MUSK1, MUSK2,
UCSB-BREAST, and COLON-CANCER, as shown in Fig. 6.
Specifically, the first two rows show how the RGMIL performs
action selection and guides GNN training. The third row shows
the reward calculation process using the historical verification
performance. Since the termination condition depends on these
reward records, the third row also shows the final convergence
of the game. The fourth row counts the access statistics of all
states (training blocks) in the state space. The last row presents
the optimization process of the agents, which differentiates and
optimizes the two agents by value decomposition.

The figures in Fig. 6 can be divided into three stages. For the
beginning stage (time steps before “STA.”), the agents explore
different action combinations with high probability. Therefore,
the action selection at this stage fluctuates greatly. At the same
time, the verification performance of the model with large loss
changes is not stable, resulting in large fluctuations in rewards.
After gathering sufficient experiences through continuous state
transfer, RGMIL optimizes the agents in the second stage (time
steps between “STA.” and “END”). At this stage, the gradually
stable agents drive the game to gradually converge. Then GNN
completes optimization under relatively stable action guidance.
Rewards at the final stage (time steps after “END”) still change
due to slight fluctuations in performance until MG terminates,
where the mean of the last µ rewards approaches 0. This game
converges to the Nash equilibrium, where the last actions form
the optimal combination.

In addition to the stage division, we also draw the following
observations. First, since RGMIL selects actions that maximize
Q-values with an increasing probability (1−ϵ), the fluctuations
in action selection (sub-figures in the first row) are increasingly
affected by fluctuations in agent optimization (in the last row).
Second, because Sec. IV-B dictates the maximum µ of training
times of GNN using the same action combination, the RGMIL
often stops the GNN training (in the second row) quickly after
the actions stabilize. In other words, no new combinations will
appear in the time steps after “END”. Third, the improvement
of GNN training efficiency makes the verification performance
gradually stabilize. Since the reward function is done based on
historical performance in Sec. IV-C, rewards and performance
yield similar fluctuations (in the third row), improving reward
reliability and game stability. Finally, the global state transition

12

(a) Tissue image (b) Instances (c) Ground truth (d) AbMIL-Gated (e) ARP-MINN (f) RGMIL

Fig. 9: Visualization of instance weights of two randomly selected image bags from COLON-CANCER. (a) The initial colon
tissue images. (b) All ROI instances of shape 27×27. (c) Ground truths: ROIs that belong to the class epithelial. (d)-(f) Heatmaps
from the three models, i.e., AbMIL-Gated, ARP-MINN, and RGMIL.

in Sec. IV-D traverses all training blocks differently depending
on the frequency of different actions (in the fourth raw).

For the observation interaction and termination functions in
sec. IV-A and sec. IV-D, we further depict the MADRL control
of RGMIL-IQL in Fig. 7. Since the two agents in RGMIL-IQL
do not interact in observations and contributions, they tend to
select extreme actions. Extreme action combinations are often
prone to embedding issues, which is why RGMIL-IQL is even
worse than RGMIL-R on MUSK1/2 datasets in Fig. 5. Besides,
we find that RGMIL-IQL, which uses the termination function
in Sec. IV-D, also ensures game convergence. Since we tie the
termination condition to the historical rewards that are tied to
the performance, the bottlenecks in classification accuracy will
force the game to complete the convergence.

E. Correlation Studies

After illustrating Fig. 6 and Fig. 7, we qualitatively ascertain
that RGMIL using the optimized VDN is better than RGMIL-
IQL. Therefore, we quantitatively inspect the quality of action
combinations yielded by RGMIL, and analyze the correlations
between edge densities in the bags and aggregation iterations.
Fig. 8 shows the mean performance of RGMIL over all actions
in another action space after fixing the edge filtering threshold
(first row) or the number of layers (second row). For BREAST
(first column), we find that when the threshold is fixed at about
0.9 or the number of GNN layers is fixed at about 7, RGMIL
does best, which is consistent with the final results of MADRL
in Fig. 6. Similar conclusions can also be obtained on COLON,
which shows that the combination results of RGMIL are highly
accurate. These results show that when the edge density is low,
more iterations are needed to aggregate farther hop features for
better GNN performance. In contrast, higher densities typically
require fewer aggregation iterations, aligning with the analysis
in Sec. I. Since changes in thresholds or layers produce varying
effects on performance across different datasets, the above two
correlations are task-specific and manual adjustment is tedious.
Overall, RGMIL achieves synchronized and reliable control of
bag graphs and GNN models using MADRL, without ignoring
structure-to-architecture correlations.

TABLE VII: Time consumption (in minutes) of a repetition of
six GNN-based MIL algorithms on the animal detection tasks.

Dataset [45]

Method
GNN
-MIL
[13]

GNN
-RLHI
[14]

DGC
-MIL
[15]

BGNN
-MIL
[25]

NAGCN
[26] BGMIL

FOX 3.56 4.41 5.23 8.05 5.76 6.54
TIGER 3.15 4.28 5.76 7.96 5.53 6.63

ELEPHANT 4.21 4.58 5.86 8.15 5.40 6.27

F. Case Studies

It is important to understand the extent to which instances in
a bag affect the classification results. In other words, we need
to explain why the bag classification results were made. Thus,
we perform case studies on COLON-CANCER in this section.
As shown in Fig. 9, we visually compare the instance weights
assigned by diverse models in two correctly classified positive
image bags. The heatmaps of each image bag are obtained by
multiplying the region pixels with their corresponding instance
weights, which are normalized to [0, 1]. Then, we observe that
the heatmaps of RGMIL (in the sixth column) are aligned with
the ground truths (in the third column). Specifically, compared
to the similarly attention-based global pooling of RGMIL, the
AbMIL-Gated (fourth column) struggles to effectively conceal
irrelevant instances. One possible reason is that AbMIL-Gated
disregards modeling inter-instance dependencies and sufficient
instance-level feature discrimination. Though ARP-MINN (in
the fifth column) proposes a more advanced adaptive recurrent
pooling, RGMIL allocates higher weights (brighter heatmaps)
to the positive epithelial instances than ARP-MINN. This may
be attributed to the better instance-level feature representation
learning ability of RGMIL. The above three conclusions justify
that RGMIL achieves high-quality bag classification while also
having excellent result explainability. Besides, it is particularly
worth noting that RGMIL only has result explainability but not
model explainability. For instance, the attention-based pooling
in RGMIL enables focusing on essential instances that lead to
bag prediction results, but the explainability of its mechanism
remains a subject of ongoing debate [57], [58].

13

G. Efficiency Studies

We compare the time consumption of GNN-based strategies,
which are more complex but provide superior performance. As
an crucial factor in engineering applications, time consumption
often impacts system efficiency, user experience, and resource
utilization. Table. VII gives the time-consuming comparison of
the six algorithms in the three animal detection scenarios, from
which we obtain the following conclusions. Compared with the
basic GNN-MIL, RGMIL brings additional time consumption
due to the introduction of MADRL. In light of the outstanding
performance exhibited by RGMIL, it is worthwhile to explore
the innovative application of RL to augment GNN-based MIL.

VI. CONCLUSION

In this paper, we propose a new GNN-based MIL framework
RGMIL, enabling automated and synchronized control of bag
structures (the edge filtering threshold) and GNN architectures
(the number of GNN layers). RGMIL presents a novel avenue
for subsequent graph data mining studies, allowing the use of
MADRL to search for nodes beyond the scope of graph neural
architectures, an aspect unattainable through traditional GNAS
methods. The experimental findings indicate that balancing the
edge density and the aggregation scope enhances the untapped
potential of GNNs. In the future work, we will explore refining
instance-level reinforcement control in MIL, striving to utilize
the MADRL while simultaneously reducing time consumption.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program
of China through grant 2021YFB1714800, NSFC through
grants 62322202, 61932002, U21B2027, U23A20388, and
62266028, Beijing Natural Science Foundation through grant
4222030, Guangdong Basic and Applied Basic Research Foun-
dation through grant 2023B1515120020, and Shijiazhuang
Science & Technology Plan through grant 231130459A.

REFERENCES

[1] M. Ilse, J. Tomczak, and M. Welling, “Attention-based deep multiple
instance learning,” in ICML, 2018, pp. 2127-2136.

[2] M. Kandemir, C. Zhang, and F. A. Hamprecht, “Empowering multiple
instance histopathology cancer diagnosis by cell graphs,” in MICCAI,
2014, vol. 8674, pp. 228-235.

[3] Z. Zhou, K. Jiang, and M. Li, “Multi-instance learning based web
mining,” in Applied Intelligence, 2005, vol. 22, pp. 135-147.

[4] D. Zhang, Y. Liu, L. Si, J. Zhang, and R. Lawrence, “Multiple instance
learning on structured data,” in NeurIPS, 2011, vol. 24, pp. 145–153.

[5] J. Wu, X. Zhu, C. Zhang, and S. Y. Philip, “Bag constrained structure
pattern mining for multi-graph classification,” IEEE TKDE, 2014, vol.
26, no. 10, pp. 2382-2396.

[6] Y. Ji, H. Liu, B. He, X. Xiao, H. Wu, and Y. Yu, “Diversified multiple in-
stance learning for document-level multi-aspect sentiment classification,”
in EMNLP, 2020, pp. 7012-7023.

[7] J. Wu, Y. Yu, C. Huang, and K. Yu, “Deep multiple instance learning for
image classification and auto-annotation,” in CVPR, 2015, pp. 3460-3469.

[8] G. Yu, G. Zhou, X. Zhang, C. Domeniconi, and M. Guo, “DMIL-
IsoFun: predicting isoform function using deep multi-instance learning,”
in Bioinformatics, 2021, vol. 37, no. 24, pp. 4818–4825.

[9] X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu, “Revisiting multiple
instance neural networks,” in Pattern Recognition, 2018, vol. 74, pp. 15-
24.

[10] X. Shi, F. Xing, Y. Xie, Z. Zhang, L. Cui, and L. Yang, “Loss-based
attention for deep multiple instance learning,” in AAAI, 2020, vol. 34,
No. 4, pp. 5742-5749.

[11] Z. Zhou and J. Xu, “On the relation between multi-instance learning
and semi-supervised learning,” in ICML, 2007, pp. 1167-1174.

[12] Z. Zhou, Y. Sun, and Y. Li, “Multi-instance learning by treating instances
as non-iid samples,” in ICML, 2009, pp. 1249-1256.

[13] M. Tu, J. Huang, X. He, and B. Zhou, “Multiple instance learning with
graph neural networks,” in ICML Workshop on Learning and Reasoning
with Graph-Structured Data, 2019.

[14] M. Adnan, S. Kalra, and H. R. Tizhoosh, “Representation learning of
histopathology images using graph neural networks,” in CVPR Work-
shops, 2020, pp. 988-989.

[15] Y. Zhao, F. Yang, Y. Fang, H. Liu, N. Zhou, J. Zhang, ..., and J. Yao,
“Predicting lymph node metastasis using histopathological images based
on multiple instance learning with deep graph convolution,” in CVPR,
2020, pp. 4837-4846.

[16] J. Xiong, Z. Li, G. Wang, Z. Fu, F. Zhong, T. Xu, ..., and M. Zheng,
“Multi-instance learning of graph neural networks for aqueous pKa
prediction,” in Bioinformatics, 2022, vol. 38, no. 3, pp. 792–798.

[17] K. Oono and T. Suzuki, “Graph neural networks exponentially lose
expressive power for node classification,” in ICLR, 2019.

[18] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from the
topological view,” in AAAI, 2019, vol. 34, no. 4, pp. 3438-3445.

[19] L. S. Shapley, “Stochastic games,” in NAS, 2020, vol. 39, no. 10, pp.
1095-1100.

[20] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, ..., T. Graepel, “Value-decomposition networks for cooper-
ative multi-agent learning based on team reward,” in AAMAS, 2018, vol.
3, pp. 2085-2087.

[21] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[22] Y. Xing, G. Yu, J. Wang, C. Domeniconi, and X. Zhang, “Weakly-
supervised multi-view multi-instance multi-label learning,” in IJCAI,
2021, pp. 3124–3130.

[23] Y. Xing, G. Yu, C. Domeniconi, J. Wang, Z. Zhang, and M. Guo, “Multi-
view multi-instance multi-label learning based on collaborative matrix
factorization,” in AAAI, 2019, vol. 33, no. 01, pp. 5508–5515.

[24] G. Yu, Y. Xing, J. Wang, C. Domeniconi, and X. Zhang, “Multiview
multi-instance multilabel active learning,” in IEEE TNNLS, 2021, vol.
33, no. 9, pp. 4311–4321.

[25] S. Pal, A. Valkanas, F. Regol, and M. Coates, “Bag graph: Multiple
instance learning using bayesian graph neural networks,” in AAAI, 2022,
vol. 36, no. 7, pp. 7922-7930.

[26] Y. Guan, J. Zhang, K. Tian, S. Yang, P. Dong, J. Xiang, ..., and
X. Han, “Node-aligned graph convolutional network for whole-slide
image representation and classification,” in CVPR, 2022, pp. 18813-
18823.

[27] K. Xu, C. Li, Y. Tian, T. Sonobe, K. I. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in ICML, 2018, pp. 5453-5462.

[28] G. Li, M. Muller, A. Thabet, and B. Ghanem, “Deepgcns: Can gcns go
as deep as cnns?” in ICCV, 2019, pp. 9267-9276.

[29] H. Chen, Y. Xu, F. Huang, Z. Deng, W. Huang, S. Wang, ..., and Z. Li,
“Label-aware graph convolutional networks,” in CIKM, 2019, pp. 1977-
1980.

[30] H. Peng, R. Zhang, Y. Dou, R. Yang, J. Zhang, and P. S. Yu, “Reinforced
neighborhood selection guided multi-relational graph neural networks,”
ACM TOIS, 2021, vol. 40, no. 4, pp. 1-46.

[31] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing
graph neural network-based fraud detectors against camouflaged fraud-
sters,” in CIKM, 2021, pp. 315-324.

[32] X. Zhao, Q. Dai, J. Wu, H. Peng, M. Liu, X. Bai, ..., and P. S. Yu, “Multi-
view tensor graph neural networks through reinforced aggregation,” IEEE
TKDE, 2022, vol. 35, no. 4, pp. 4077–4091.

[33] X. Zhao, J. Wu, H. Peng, A. Beheshti, J. J. Monaghan, D. McAlpine, ...,
and L. He, “Deep reinforcement learning guided graph neural networks
for brain network analysis,” in Neural Networks, 2022, vol. 154, pp. 56-
67.

[34] K. H. Lai, D. Zha, K. Zhou, and X. Hu, “Policy-gnn: Aggregation
optimization for graph neural networks,” in KDD, 2020, pp. 461-471.

[35] Y. Yang, Y. Pan, C. Xu, and D. C. Wunsch, “Hamiltonian-driven adaptive
dynamic programming with efficient experience replay,” in IEEE TNNLS,
2022, pp. 1–13.

[36] Y. Yang, B. Kiumarsi, H. Modares, and C. Xu, “Model-free λ-policy
iteration for discrete-time linear quadratic regulation,” in IEEE TNNLS,
2023, vol. 34, no. 2, pp. 635–649.

14

[37] Y. Yang, H. Modares, K. G. Vamvoudakis, and F. L. Lewis, “Cooperative
finitely excited learning for dynamical games,” in IEEE Transactions on
Cybernetics, 2023, pp. 1–14.

[38] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graph neural
architecture search,” in IJCAI, 2020, pp. 1403–1409.

[39] M. Yoon, T. Gervet, B. Hooi, and C. Faloutsos, “Autonomous graph
mining algorithm search with best speed/accuracy trade-off,” in IEEE
ICDM, 2020, pp. 751-760.

[40] J. You, Z. Ying, and J. Leskovec, “Design space for graph neural
networks,” in NeurIPS, 2020, vol. 33, pp. 17009-17021.

[41] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,” in
Mathematics of Operations Research, 2002, vol. 27, no. 4, pp. 819-840.

[42] C. J. Watkins, and P. Dayan, “Q-learning,” in Machine Learning, 2002,
vol. 8, no. 3, pp. 279-292.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, ..., and D. Hassabis, “Human-level control through deep reinforce-
ment learning,” in Nature, 2015, vol. 518, no. 7540, pp. 529-533.

[44] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” in Artificial
Intelligence, 1997, vol. 89, no. 1-2, pp. 31-71.

[45] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector ma-
chines for multiple-instance learning,” in NeurIPS, 2002, vol. 14, pp.
561-568.

[46] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone,
..., and J. C. Klein, “Feedback on a publicly distributed image database:
the Messidor database,” in Image Analysis & Stereology, 2014, vol. 33,
no. 3, pp. 231-234.

[47] M. Kandemir and F. A. Hamprecht, “Computer-aided diagnosis from
weak supervision: A benchmarking study,” in Computerized Medical
Imaging and Graphics, 2015, vol. 42, pp. 44-50.

[48] L. R.-Vitiani, D. G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro,
C. Peschle, and R. De Maria, “Identification and expansion of human
colon-cancer-initiating cells,” in Nature, 2007, vol. 445, no. 7123, pp.
111-115.

[49] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-instance
kernels,” in ICML, 2014, vol. 2, no. 3, pp. 179-186.

[50] Q. Zhang and S. Goldman, “EM-DD: An improved multiple-instance
learning technique,” in NeurIPS, 2001, vol. 14, pp. 1073-1080.

[51] X. Wei, J. Wu, and Z. Zhou, “Scalable algorithms for multi-instance
learning,” IEEE TNNLS, 2016, vol. 28, no. 4, pp. 975-987.

[52] W. Zhang, “Non-I.I.D. multi-instance learning for predicting instance
and bag labels with variational auto-encoder,” in IJCAI, 2021, pp. 3377–
3383.

[53] Y. Ding, L. Zhao, L. Yuan, and X. Wen, “Deep multi-instance learning
with adaptive recurrent pooling for medical image classification,” IEEE
BIBM, 2022, pp. 3335-3342.

[54] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017, pp. 1–14.

[55] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, ...,
and R. Vicente, “Multiagent cooperation and competition with deep rein-
forcement learning,” in PLOS ONE, 2017, vol. 12, no. 4, pp. e0172395.

[56] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 1998, vol.
86, no. 11, pp. 2278-2324.

[57] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” in
EMNLP-IJCNLP, 2019, pp. 11–20.

[58] S. Jain and B. C. Wallace, “Attention is not explanation,” in NAACL-
HLT, 2019, pp. 3543–3556.

Xusheng Zhao is currently a Ph.D. candidate in
the Institute of Information Engineering, Chinese
Academy of Sciences, and the School of Cyber Se-
curity, University of Chinese Academy of Sciences.
His research interests include representation learning
and reinforcement learning.

Qiong Dai is currently an Associate Professor at
the Institute of Information Engineering, Chinese
Academy of Sciences. Her current research interests
include data mining, knowledge graph, and collabo-
rative computing.

Xu Bai is an Engineering at the Institute of Informa-
tion Engineering, Chinese Academy of Sciences. His
current research interests include network security
and social computing.

Jia Wu received the Ph.D. degree in computer
science from the University of Technology Sydney,
Australia. Dr. Wu is currently the Research Director
for the AI-enabled Processes (AIP) Research Centre
and an ARC DECRA Fellow in the School of Com-
puting, Macquarie University, Sydney, Australia. He
is the Associate Editor of the ACM Transactions
on Knowledge Discovery from Data (TKDD) and
Neural Networks (NN).

Hao Peng is currently a Professor at the School
of Cyber Science and Technology, Beihang Uni-
versity. His research interests include representation
learning, social network mining, and reinforcement
learning. To date, Dr. Peng has published over 150
research papers in top-tier journals and conferences,
including the IEEE TPAMI, TKDE, TPDS, TC,
JMLR, ACM TOIS, TKDD, and Web Conference.
He is the Associate Editor of the International Jour-
nal of Machine Learning and Cybernetics (IJMLC).

Huailiang Peng is an Engineer at the Institute of
Information Engineering, Chinese Academy of Sci-
ences. His current research interests include social
network analysis and graph representation learning.

Zhengtao Yu received the Ph.D. degree in computer
application technology from the Beijing Institute of
Technology, Beijing, China, in 2005. He is currently
a Professor at the School of Information Engineering
and Automation, Kunming University of Science and
Technology, China. His research interests include
natural language processes, image processing, and
machine learning.

Philip S. Yu is a Distinguished Professor and the
Wexler Chair in Information Technology at the De-
partment of Computer Science, University of Illinois
at Chicago. Before joining UIC, he was at the IBM
Watson Research Center, where he built a world-
renowned data mining and database department.
He is a Fellow of the ACM and IEEE. Dr. Yu
was the Editor-in-Chiefs of ACM Transactions on
Knowledge Discovery from Data (2011-2017) and
IEEE TKDE (2001-2004).

